
Copyright© 2012 KRvW Associates, LLC

The Art of Building Bulletproof
Mobile Apps

1/2-day Class

Apple iOS Edition

Copyright© 2012 KRvW Associates, LLC

What you’ll need in this class

If you want to be able to
do the hands-on exercises
and labs
–Apple Xcode (latest)
– iGoat source code
–Other tools I will provide

lBurpSuite
l iExplorer

2

Copyright© 2012 KRvW Associates, LLC

Understanding the problem
Just how bad is it, and why?

Copyright© 2012 KRvW Associates, LLC

Mobile platforms

How secure are today’s
mobile platforms?
–Lots of similarities to web

applications but...
Gold rush mentality
–Developers are on a death

march to produce apps
–Unprecedented rate
–Security often suffers...

4

Copyright© 2012 KRvW Associates, LLC

Mobile app threat model

Many considerations
–Platforms vary substantially
–Similar but still very

different than traditional
web app--even when heavy
with client-side code

– It’s more than just apps
lCloud/network integration
lDevice platform considerations

5

6

Mobile Threat Model

7

Mobile Threat Model

Copyright© 2012 KRvW Associates, LLC

Biggest issue: lost/stolen device

Anyone with physical access
to your device can get to a
wealth of data
– PIN is not effective
– App data
– Keychains
– Properties
Disk encryption helps, but we
can’t count on users using it
See forensics results

8

Copyright© 2012 KRvW Associates, LLC

Second biggest: insecure comms

Without additional
protection, mobile devices
are susceptible to the
“coffee shop attack”
–Anyone on an open WiFi

can eavesdrop on your data
–No different than any other

WiFi device really
Your apps MUST protect
your users’ data in transit

9

Copyright© 2012 KRvW Associates, LLC

Typical mobile app

Most mobile apps are
basically web apps
– Clients issue web services

request
lSOAP or RESTful

– Servers respond with XML
data stream

But with more client
“smarts”
Almost all web weaknesses
are relevant, and more

10

11

Copyright© 2012 KRvW Associates, LLC

A lot to consider

That’s a lot of mistakes to
avoid (and there are more)
–What are the key differences

between the web list and the
mobile list?

–What assumptions must we
then make in our apps?

–What assumptions are
unsafe?

12

Copyright© 2012 KRvW Associates, LLC

Security Principles and Pitfalls
Including hands-on exercises

Copyright© 2012 KRvW Associates, LLC

Let’s consider the basics

We’ll cover these (from
the mobile top 10)
–Protecting secrets

lAt rest
l In transit

– Input/output validation
–Authentication
–Session management
–Access control
–Privacy concerns

14

Copyright© 2012 KRvW Associates, LLC

Hands-on examples

Topic discussion
Hands-on examples to
really understand
–Optional, but recommended
Instructor will demo as
well

15

Copyright© 2012 KRvW Associates, LLC

Some tools we’ll be using

We’ll also later use a couple others
–Burpsuite -- another web app proxy, but handles SSL

really easily
– iPhone Explorer -- allows us to look at the files on an iOS

device
lNon-destructively, of course
lDoes NOT require any jailbreaking to work

–Xcode, iPhone simulator, and Finder
lTo build some apps and explore their file systems

16

Copyright© 2012 KRvW Associates, LLC

Introducing OWASP’s iGoat

A new OWASP project
– iGoat
–Developer tool for learning

major security issues on iOS
platform

–Inspired by OWASP’s
WebGoat tool for web apps

17

Copyright© 2012 KRvW Associates, LLC

A word of warning on ethics

You will see, learn, and perform real attacks against
a web and/or mobile application today
You may only do this on applications where you
are authorized
Violating this is a breach of law in most countries

Do not do this on real apps without explicit
authorization from the owner

18

Copyright© 2012 KRvW Associates, LLC

Attack vector: lost/stolen device

Anyone with physical
access to your device can
get to a wealth of data
–PIN is not effective
–App data
–Keychains
–Properties
See forensics studies
Your app must protect
users’ local data storage

19

20

M1- Insecure Data Storage

• Sensitive data left unprotected

• Applies to locally stored data +
cloud synced

• Generally a result of:

• Not encrypting data

• Caching data not intended for long-term
storage

• Weak or global permissions

• Not leveraging platform best-practices

Impact

• Confidentiality
of data lost

• Credentials
disclosed

• Privacy
violations

• Non-
compliance

21

M1- Insecure Data Storage

22

M1- Insecure Data Storage
Prevention Tips

• Store ONLY what is absolutely
required

• Never use public storage areas (ie-
SD card)

• Leverage secure containers and
platform provided file encryption
APIs

• Do not grant files world readable or
world writeable permissions

Control
#

Description

1.1-1.14 Identify and protect sensitive
data on the mobile device

2.1, 2.2,
2.5

Handle password credentials
securely on the device

Copyright© 2012 KRvW Associates, LLC

SQLlite example

Let’s look at a database
app that stores sensitive
data into a SQLite db
–We’ll recover it trivially by

looking at the unencrypted
database file

23

Copyright© 2012 KRvW Associates, LLC

Protecting secrets at rest

Encryption is the answer,
but it’s not quite so simple
– Where did you put that key?
– Surely you didn’t hard code it

into your app
– Surely you’re not counting

on the user to generate and
remember a strong key

Key management is a non-
trivially solved problem

24

Copyright© 2012 KRvW Associates, LLC

How bad is it?

It’s tough to get right
– Key management is

everything
We’ve seen many
examples of failures
– Citi and others
Consider lost/stolen device
as worst case
– Would you be confident of

your app/data in hands of
biggest competitor?

25

Copyright© 2012 KRvW Associates, LLC

Exercise - static analysis of an app

Explore folders
– ./Documents
– ./Library/Caches/*
– ./Library/Cookies
– ./Library/Preferences
App bundle
–Hexdump of binary
–plist file
What else?

26

Copyright© 2012 KRvW Associates, LLC

Tools to use

Mac tools
–Finder
– iPhone Explorer
–hexdump
–strings
–otool
–otx (otx.osxninja.com)
–class-dump

(iphone.freecoder.org/
classdump_en.html)

–Emacs (editor)
Xcode additional tools
–Clang (build and

analyze)
lFinds memory leaks and

others

27

Copyright© 2012 KRvW Associates, LLC

What to examine?

See for yourself
–There is no shortage of

sloppy applications in the
app stores

–Start with some apps that
you know store login
credentials

28

Copyright© 2012 KRvW Associates, LLC

Attack vector: coffee shop attack

Exposing secrets through
non-secure connections is
rampant
– Firesheep description
Most likely attack targets
– Authentication credentials
– Session tokens
– Sensitive user data
At a bare minimum, your app
needs to be able to withstand
a coffee shop attack

29

30

M3- Insufficient Transport Layer Protection

• Complete lack of encryption for
transmitted data

• Yes, this unfortunately happens often

• Weakly encrypted data in transit

• Strong encryption, but ignoring
security warnings

• Ignoring certificate validation errors

• Falling back to plain text after failures

Impact

• Man-in-the-
middle attacks

• Tampering w/
data in transit

• Confidentiality
of data lost

31

M3- Insufficient Transport Layer Protection
Prevention Tips

• Ensure that all sensitive data
leaving the device is
encrypted

• This includes data over carrier
networks, WiFi, and even NFC

• When security exceptions are
thrown, it’s generally for a
reason…DO NOT ignore them!

Control
#

Description

3.1.3.6 Ensure sensitive data is
protected in transit

Copyright© 2012 KRvW Associates, LLC

Exercise - dynamic net analysis

Let’s see how to set up a
dynamic analysis test bed
–Configure proxy on your

laptop
lMake note of external IP

number on your net
–Point iPhone/iPad network

settings to IP number of
proxy

–Observe the network traffic
–Note SSL limitations

32

Copyright© 2012 KRvW Associates, LLC

Exercise - coffee shop attack

This one is trivial, but
let’s take a look
In this iGoat exercise, the
user’s credentials are sent
plaintext
–Simple web server running

on Mac responds
– If this were on a public

WiFi, a network sniffer
would be painless to launch

33

Copyright© 2012 KRvW Associates, LLC

Protecting users’ secrets in transit

Always consider the
coffee shop attack as
lowest common
denominator
We place a lot of faith in
SSL
–But then, it’s been subjected

to scrutiny for years

34

Copyright© 2012 KRvW Associates, LLC

Passing secrets

In this simple example,
we’ll send customer data
to a proxy server and
intercept via a simulated
coffee shop attack

35

Copyright© 2012 KRvW Associates, LLC

How bad is it?

Neglecting SSL on
network comms is
common
–Consider the exposures

lLogin credentials
lSession credentials
lSensitive user data

Will your app withstand a
concerted coffee shop
attacker?

36

Copyright© 2012 KRvW Associates, LLC

Attack vector: web app weakness

Remember, modern
mobile devices share a lot
of weaknesses with web
applications
–Many shared technologies
–A smart phone is sort of like

a mobile web browser
lOnly worse in some regards

37

Copyright© 2012 KRvW Associates, LLC

Input and output validation

38

Problems abound
– Data must be treated as

dangerous until proven safe
– No matter where it comes

from
Examples
– Data injection
– Cross-site scripting

Where do you think input
validation should occur?

Copyright© 2012 KRvW Associates, LLC

SQL Injection

Most common
injection attack
–Attacker taints input data

with SQL statement
–Application constructs

SQL query via string
concatenation

–SQL passes to SQL
interpreter and runs on
server

Consider the following
input to an HTML form
–Form field fills in a

variable called
“CreditCardNum”

–Attacker enters
l ‘
l ‘ --
l ‘ or 1=1 --

–What happens next?

39

Copyright© 2012 KRvW Associates, LLC

SQL injection exercise - client side

40

In this one, a local SQL
db contains some
restricted content
–Attacker can use “SQLi” to

view restricted info
Not all SQLi weaknesses
are on the server side!

Question: Would db
encryption help?

Copyright© 2012 KRvW Associates, LLC

Platform Architecture - iOS
What the iOS / hardware platform
offers us in the way of protection

Copyright© 2012 KRvW Associates, LLC

iOS application architecture

The iOS platform is
basically a subset of a
regular Mac OS X
system’s
–From user level (Cocoa)

down through Darwin
kernel

–Apps can reach down as
they choose to

–Only published APIs are
permitted, however

42

Copyright© 2012 KRvW Associates, LLC

Key security features

Application sandboxing
App store protection
Hardware encryption
Keychains
SSL and certificates

43

Copyright© 2012 KRvW Associates, LLC

Application sandboxing

By policy, apps are only
permitted to access
resources in their sandbox
–Inter-app comms are by

established APIs only
lURLs, keychains (limited)

–File i/o in ~/Documents
only

Sounds pretty good, eh?

44

Copyright© 2012 KRvW Associates, LLC

App store protection

Access is via digital
signatures
– Only registered developers may

introduce apps to store
l Apps are required to conform to

Apple’s rules
– Only signed apps may be

installed on devices
Sounds good also, right?
– But then there’s jailbreaking...
– Easy and free
– Completely bypasses sigs

45

Copyright© 2012 KRvW Associates, LLC

App Store Review Limitations

Don’t count on the App Store
to find your app’s
weaknesses
Consider what they can
review
– Memory leaks, functionality
– Playing by Apple’s rules

l Published APIs only

– Protecting app data?
l Do they know your app?

– Deliberate malicious
“features”?

46

Copyright© 2012 KRvW Associates, LLC

Hardware encryption

Each iOS device (as of
3S) has hardware crypto
module
–Unique AES-256 key for

every iOS device
–Sensitive data hardware

encrypted
Sounds brilliant, right?
–Well...

47

Copyright© 2012 KRvW Associates, LLC

Keychains

Keychain API provided
for storage of small
amounts of sensitive data
–Login credentials,

passwords, etc.
–Encrypted using hardware

AES
Also sounds wonderful
–Wait for it...

48

Copyright© 2012 KRvW Associates, LLC

SSL and x.509 certificate handling

API provided for SSL and
certificate verification
– Basic client to server SSL is

easy
– Mutual verification of

certificates is achievable, but
API is complex

Overall, pretty solid
– Whew!
– Not so easy to implement,

though...
49

Copyright© 2012 KRvW Associates, LLC

And a few glitches...

Keyboard data
Screen snapshots
Hardware encryption is
flawed

50

Copyright© 2012 KRvW Associates, LLC

Keyboard data

All “keystrokes” are
stored
–Used for auto-correct

feature
–Nice spell checker
Key data can be harvested
using forensics
procedures
–Passwords, credit cards...
–Needle in haystack?

51

Copyright© 2012 KRvW Associates, LLC

Screen snapshots

Devices routinely grab
screen snapshots and store
in JPG
–Used for minimizing app

animation
–Because it looks pretty
WHAT?!
–It’s a problem
–Requires local access to

device, but still...

52

Copyright© 2012 KRvW Associates, LLC

But the clincher

Hardware module protects
unique key via device PIN
–PIN can trivially be disabled

in many cases
–Jailbreak software
No more protection...

Note: Strong passcodes
help

53

Copyright© 2012 KRvW Associates, LLC

Discouraged?

If we build our apps using
these protections only,
we’ll have problems
– But consider risk
– What is your app’s “so

what?” factor?
– What data are you

protecting?
– From whom?
– Might be enough for some

purposes
54

Copyright© 2012 KRvW Associates, LLC

But for a serious enterprise...

The protections provided
are simply not adequate to
protect serious data
–Financial
–Privacy
–Credit cards
We need to further lock
down
–But how much is enough?

55

Copyright© 2012 KRvW Associates, LLC

Application Architecture
How do we build our apps securely?

iOS security building blocks

Copyright© 2012 KRvW Associates, LLC

Common app types

Web app
Web-client hybrid
App
–Stand alone
–Client-server
–Networked
Decision time...

57

Copyright© 2012 KRvW Associates, LLC

Web applications

Don’t laugh--you really
can do a lot with them
–Dashcode is pretty slick
–Can give a very solid UI to

a web app
Pros and cons
–Data on server (mostly)
–No app store to go through
–Requires connectivity

58

Copyright© 2012 KRvW Associates, LLC

Web-client hybrid

Local app with web views
–Still use Dashcode on web

views
–Local resources available

via Javascript
lLocation services, etc

Best of both worlds?
–Powerful, dynamic
–Still requires connection

59

Copyright© 2012 KRvW Associates, LLC

iOS app -- client-server

Most common app for
enterprises
– Basically alternate web client

for many
– But with iOS UI on client

side
– Server manages access,

sessions, etc.
Watch out for local storage
– Avoid if possible
– Encrypt if not

60

Copyright© 2012 KRvW Associates, LLC

iOS app -- networked

Other network
architectures also
–Internet-only
–P2P apps
Not common for
enterprise purposes

61

Copyright© 2012 KRvW Associates, LLC

Major APIs where security matters

There are many places
where you have to take extra
caution
– Keystroke logging
– Cut/paste
– Backgrounding
– Frameworks

l Keychain
l Networking
l Crypto
l Randomness
l Geolocation

62

Copyright© 2012 KRvW Associates, LLC

Keyboard logging

Used by spell checker, autocompletion, etc.
–Turned on everywhere by default
–Disabled for password fields
–You must manually turn off for other sensitive data fields

lSet UITextField property autocorrectionType =
UITextAutocorrectionNone

See iOS Application Programming Guide

63

Copyright© 2012 KRvW Associates, LLC

Cut and paste buffer

Available pretty much everywhere, to all apps
–Two primary access methods

lUIPasteboardNameGeneral and UIPasteboardNameFind
–Take caution to clean up after use
See iOS Application Programming Guide

64

Copyright© 2012 KRvW Associates, LLC

Don’t forget screen shots

When an app
backgrounds, a screen
shot is snapped
–Safest bet is to disallow

lUIApplicationExitsOnSuspend
lSet in info.plist

– If not feasible, clear data
–Detect/control backgrounds

lSeveral key methods for
controlling backgrounding

65

Copyright© 2012 KRvW Associates, LLC

Backgrounding safely

Key delegated methods to control
–applicationDidEnterBackground

lSet any sensitive fields hidden
– viewController.secretData.hidden = YES;

–applicationDidBecomeActive
lBefore returning control, be sure to restore any sensitive user data

– viewController.secreData.hidden = NO;

This causes screen shot to be saved, but without
sensitive data

66

Copyright© 2012 KRvW Associates, LLC

Relevant backgrounding methods

Also look at
–applicationWillEnterForeground:
–applicationWillTerminate:
–applicationDidBecomeActive
–applicationWillResignActive
–applicationDidEnterBackground
–application: didFinishLaunchingWithOptions:
See iOS Application Programming Guide

67

Copyright© 2012 KRvW Associates, LLC

Common frameworks - Keychain

Used for storing credentials
–Protected by system AES and PIN

lFurther protection in app is advisable
–Primary methods

lSecItemCopyMatching, SecItemAdd, SecItemUpdate,
SecItemDelete

–Adequate for consumer-grade data
See Keychain Services Programming Guide

68

Copyright© 2012 KRvW Associates, LLC

Common frameworks - Network

APIs in various layers
– WebKit

l Safari browser and UIWebView
– NSURL

l Cocoa Obj-C
l Does most of the heavy lifting for you

– CFNetwork
l Core Foundation layer - more control over behavior
l Supports sockets, streams, etc.

– BSD Sockets
– All support SSL

See CFNetwork Programming Guide

69

Copyright© 2012 KRvW Associates, LLC

Common frameworks - Crypto

Certificate, key, and trust services
– In Core Foundation layer
–Methods for

lCertificate management (generate, add, delete, find, update)
lEvaluate a certificate’s trust
lEncrypt and decrypt

See Certificate, Key, and Trust Services
Programming Guide

70

Copyright© 2012 KRvW Associates, LLC

Common frameworks - Random

When you have a need for strong randomness
–Avoid /dev/random
–Instead, use SecRandomCopyBytes

l int sesskey = SecRandomCopyBytes
(kSecRandomDefault, sizeof(int),
(uint8_t*)& randomResult);

See Randomization Services Reference

71

Copyright© 2012 KRvW Associates, LLC

Common frameworks - Location

Easy to use but fraught with peril
–Privacy concerns make this the “third rail” of iOS dev
–Don’t store users’ locations
– If you must, only do so on an “opt-in” basis
See Location Awareness Programming Guide

72

Copyright© 2012 KRvW Associates, LLC

Common Security Mechanisms
Now let’s build security in

Copyright© 2012 KRvW Associates, LLC

Common mechanisms

Input validation
Output escaping
Authentication
Session handling
Protecting secrets
–At rest
– In transit
SQL connections

74

Copyright© 2012 KRvW Associates, LLC

Input validation

Positive vs negative
validation
–Dangerous until proven safe
–Don’t just block the bad
Consider the failures of
desktop anti-virus tools
–Signatures of known viruses

75

Copyright© 2012 KRvW Associates, LLC

Input validation architecture

We have several choices
–Some good, some bad
Positive validation is our
aim
Consider tiers of security
in an enterprise app
–Tier 1: block the bad
–Tier 2: block and log
–Tier 3: block, log, and take

evasive action to protect
76

Copyright© 2012 KRvW Associates, LLC

Input validation (in iOS)
// RFC 2822 email address regex.
NSString *emailRegex =
 @"(?:[a-z0-9!#$%\\&'*+/=?\\^_`{|}~-]+(?:\\.[a-z0-9!#$%\\&'*+/=?\\^_`{|}"
 @"~-]+)*|\"(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-\\"
 @"x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\")@(?:(?:[a-z0-9](?:[a-"
 @"z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5"
 @"]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-"
 @"9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21"
 @"-\\x5a\\x53-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])";

// Create the predicate and evaluate.
NSPredicate *regExPredicate =
 [NSPredicate predicateWithFormat:@"SELF MATCHES %@", emailRegEx];
BOOL validEmail = [regExPredicate evaluateWithObject:emailAddress];

if (validEmail) {
 ...
} else {
 ...
}

77

Copyright© 2012 KRvW Associates, LLC

Input validation (server side Java)

protected final static String ALPHA_NUMERIC =
 “^[a-zA-Z0-9\s.\-]+$”;
// we only want case insensitive letters and numbers
public boolean validate(HttpServletRequest request, String
parameterName) {
boolean result = false;
Pattern pattern = null;
parameterValue = request.getParameter(parameterName);
if(parameterValue != null) {
 pattern = Pattern.compile(ALPHA_NUMERIC);
 result = pattern.matcher(parameterValue).matches();
 return result;
} else
{ // take alternate action }

78

Copyright© 2012 KRvW Associates, LLC

Output encoding

Principle is to ensure data
output does no harm in
output context
–Output escaping of control

chars
lHow do you drop a “<“ into an

XML file?

–Consider all the possible
output contexts

79

Copyright© 2012 KRvW Associates, LLC

Output encoding

This is normally server
side code
Intent is to take dangerous
data and output harmlessly
Especially want to block
Javascript (XSS)
In iOS, not as much
control, but
– Never point UIWebView to

untrusted content

80

Copyright© 2012 KRvW Associates, LLC

Output encoding (server side)

Context
<body> UNTRUSTED DATA HERE </body>
<div> UNTRUSTED DATA HERE </div>
 other normal HTML elements

String safe =
ESAPI.encoder().encodeForHTML(request.getParameter(“input”));

81

Copyright© 2012 KRvW Associates, LLC

Authentication

This next example is for
authenticating an app user
to a server securely
–Server takes POST request,

just like a web app

82

Copyright© 2012 KRvW Associates, LLC

Authentication (POST forms-style)
// Initialize the request with the YouTube/Google ClientLogin URL (SSL).
NSString youTubeAuthURL = @"https://www.google.com/accounts/ClientLogin";
NSMutableRequest *request =
 [NSMutableURLRequest requestWithURL:[NSURL URLWithString:youTubeAuthURL]];

[request setHTTPMethod:@"POST"];

// Build the request body (form submissions POST).
NSString *requestBody =
 [NSString stringWithFormat:@"Email=%@&Passwd=%@&service=youtube&source=%@",
 emailAddressField.text, passwordField.text, @"Test"];

[request setHTTPBody:[requestBody dataUsingEncoding:NSUTF8StringEncoding]];

// Submit the request.
[[NSURLConnection alloc] initWithRequest:request delegate:self];

// Implement the NSURLConnection delegate methods to handle response.
...

83

Copyright© 2012 KRvW Associates, LLC

Mutual authentication

We may also want to use
x.509 certificates and
SSL to do strong mutual
authentication
More complicated, but
stronger
Certificate framework in
NSURL is complex and
tough to use
(Example is long--see src)

84

Copyright© 2012 KRvW Associates, LLC

Authentication (mutual)
/ Delegate method for NSURLConnection that determines whether client can handle
// the requested form of authentication.
- (BOOL)connection:(NSURLConnection *)connection
 canAuthenticateAgainstProtectionSpace:(NSURLProtectionSpace *)protectionSpace {

 // Only handle mutual auth for the purpose of this example.
 if ([[protectionSpace authenticationMethod] isEqual:NSURLAuthenticationMethodClientCertificate]) {
 return YES;
 } else {
 return NO;
 }
}

// Delegate method for NSURLConnection that presents the authentication
// credentials to the server.
- (void)connection:(NSURLConnection *)connection
 didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge {

 id<NSURLAuthenticationChallengeSender> sender = [challenge sender];
 NSURLCredential *credential;
 NSMutableArray *certArray = [NSMutableArray array];

85

Copyright© 2012 KRvW Associates, LLC

Access control (authorization)

On the iOS device itself,
apps have access to
everything in their
sandbox
Server side must be
designed and built in like
any web app

86

Copyright© 2012 KRvW Associates, LLC

Authorization basics

Question every action
–Is the user allowed to

access this
lFile
lFunction
lData
lEtc.

By role or by user
–Complexity issues
–Maintainability issues
–Creeping exceptions

87

Copyright© 2012 KRvW Associates, LLC

Role-based access control

Must be planned
carefully
Clear definitions of
–Users
–Objects
–Functions
–Roles
–Privileges

Plan for growth
Even when done well,
exceptions will happen

88

Copyright© 2012 KRvW Associates, LLC

ESAPI access control
In the presentation layer:

<% if (ESAPI.accessController().isAuthorizedForFunction(ADMIN_FUNCTION)) { %>
 ADMIN
 <% } else { %>
 NORMAL
 <% } %>

In the business logic layer:

try {
 ESAPI.accessController().assertAuthorizedForFunction(BUSINESS_FUNCTION);
 // execute BUSINESS_FUNCTION
 } catch (AccessControlException ace) {
 ... attack in progress
 }

89

Copyright© 2012 KRvW Associates, LLC

Protecting secrets at rest

The biggest problem by
far is key management
–How do you generate a

strong key?
–Where do you store the key?
–What happens if the user

loses his key?
Too strong and user
support may be an issue

90

Copyright© 2012 KRvW Associates, LLC

Built-in file protection (weak)

// API for writing to a file using writeToFile method

- (BOOL)writeToFile:(NSString *)path options:
(NSDataWritingOptions)mask error:(NSError
**)errorPtr

// To protect the file, include the
// NSDataWritingFileProtectionComplete option

91

Copyright© 2012 KRvW Associates, LLC

Protecting secrets at rest
(keychain)

// Write username/password combo to keychain.
BOOL writeSuccess = [SFHFKeychainUtils storeUsername:username
andPassword:password
 forServiceName:@"com.krvw.ios.KeychainStorage" updateExisting:YES
error:nil];
...

// Read password from keychain given username.
NSString *password = [SFHFKeychainUtils getPasswordForUsername:username
 andServiceName:@"com.krvw.ios.KeychainStorage" error:nil];
...

// Delete username/password combo from keychain.
BOOL deleteSuccess = [SFHFKeychainUtils deleteItemForUsername:username
 andServiceName:@"com.krvw.ios.KeychainStorage" error:nil];
...

92

Copyright© 2012 KRvW Associates, LLC

Enter SQLcipher

Open source extension to
SQLite
– Free
– Uses OpenSSL to AES-256

encrypt database
– Uses PBKDF2 for key

expansion
– Generally accepted crypto

standards
Available from
– http://sqlcipher.net

93

Copyright© 2012 KRvW Associates, LLC

Protecting secrets at rest
(SQLcipher)

sqlite3_stmt *compiledStmt;
// Unlock the database with the key (normally obtained via user input).
// This must be called before any other SQL operation.
sqlite3_exec(credentialsDB, "PRAGMA key = 'secretKey!'", NULL, NULL, NULL);
// Database now unlocked; perform normal SQLite queries/statments.
...
// Create creds database if it doesn't already exist.
const char *createStmt =
 "CREATE TABLE IF NOT EXISTS creds (id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT, password
TEXT)";
sqlite3_exec(credentialsDB, createStmt, NULL, NULL, NULL);
// Check to see if the user exists.
const char *queryStmt = "SELECT id FROM creds WHERE username=?";
int userID = -1;
if (sqlite3_prepare_v2(credentialsDB, queryStmt, -1, &compiledStmt, NULL) == SQLITE_OK) {
 sqlite3_bind_text(compiledStmt, 1, [username UTF8String], -1, SQLITE_TRANSIENT);
 while (sqlite3_step(compiledStmt) == SQLITE_ROW) {
 userID = sqlite3_column_int(compiledStmt, 0);
 }
}
if (userID >= 1) {
 // User exists in database.
 ...
}

94

Copyright© 2012 KRvW Associates, LLC

Protecting secrets in transit

Key management still
matters, but SSL largely
takes care of that
–Basic SSL is pretty easy in

NSURL
–Mutual certificates are

stronger, but far more
complicated

–NSURL is awkward, but it
works
lSee previous example

95

Copyright© 2012 KRvW Associates, LLC

Protecting secrets in transit
// Note the "https" protocol in the URL.
NSString *userJSONEndpoint =
 [[NSString alloc] initWithString:@"https://www.secure.com/api/user"];

// Initialize the request with the HTTPS URL.
NSMutableURLRequest *request =
 [MSMutableURLRequest requestWithURL:[NSURL URLWithString:userJSONEndpoint]];

// Set method (POST), relevant headers and body (jsonAsString assumed to be
// generated elsewhere).
[request setHTTPMethod:@"POST"];
[request setValue:@"application/json" forHTTPHeaderField:@"Content-Type"];
[request setValue:@"application/json" forHTTPHeaderField:@"Accept"];
[request setHTTPBody:[jsonAsString dataUsingEncoding:NSUTF8StringEncoding]];

// Submit the request.
[[NSURLConnection alloc] initWithRequest:request delegate:self];

// Implement delegate methods for NSURLConnection to handle request lifecycle.
...

96

Copyright© 2012 KRvW Associates, LLC

SQL connections

Biggest security problem
is using a mutable API
–Weak to SQL injection
Must use immutable API
–Similar to

PreparedStatement in Java
or C#

97

Copyright© 2012 KRvW Associates, LLC

SQL connections
// Update a users's stored credentials.
sqlite3_stmt *compiledStmt;
const char *updateStr = "UPDATE credentials SET username=?, password=? WHERE id=?";

// Prepare the compiled statement.
if (sqlite3_prepare_v2(database, updateStr, -1, &compiledStmt, NULL) == SQLITE_OK) {
 // Bind the username and password strings.
 sqlite3_bind_text(compiledStmt, 1, [username UTF8String], -1, SQLITE_TRANSIENT);
 sqlite3_bind_text(compiledStmt, 2, [password UTF8String], -1, SQLITE_TRANSIENT);

 // Bind the id integer.
 sqlite3_bind_int(compiledStmt, 3, userID);

 // Execute the update.
 if (sqlite3_step(compiledStmt) == SQLITE_DONE) {
 // Update successful.
 }
}

98

Copyright© 2012 KRvW Associates, LLC

Other pitfalls

Format string issues from C
NSString	 outBuf	 =	 @”String	 to	 be	 appended”;	
outBuf	 =	 [outBuf	 stringByAppendingFormat:[UtilityClass	

formatBuf:	 unformattedBuff.text]];

vs.

NSString	 outBuf	 =	 @”String	 to	 be	 appended”;	
outBuf	 =	 [outBuf	 stringByAppendingFormat:@”%@”,[UtilityClass	

formatBuf:	 unformattedBuff.text]];

99

Copyright© 2012 KRvW Associates, LLC

Now let’s try some in iGoat labs

A new OWASP project
– iGoat
–Developer tool for learning

major security issues on iOS
platform

–Inspired by OWASP’s
WebGoat tool for web apps

Released 15 June 2011

100

Copyright© 2012 KRvW Associates, LLC

iGoat Layout

Exercise categories
–Data protection (transit)
–Authentication
–Data protection (rest)
– Injection

101

Copyright© 2012 KRvW Associates, LLC

Exercise example - Backgrounding

Intro describes the nature
of the issue
Credits page too, so
others can contribute with
due credit

102

Copyright© 2012 KRvW Associates, LLC

Exercise example - Main screen

This screen is the main
view of the exercise
–Enter data, etc., depending

on the exercise

103

Copyright© 2012 KRvW Associates, LLC

Exercise - Hints

Each exercise contains a
series of hints to help the
user
–Like in WebGoat, they are

meant to help, but not quite
solve the problem

104

Copyright© 2012 KRvW Associates, LLC

Exercise - Solution

Then there’s a solution
page for each exercise
–This describes how the

exercise can be solved
No source code
remediations yet
–That comes in the next step

105

Copyright© 2012 KRvW Associates, LLC

iGoat URLs

Project Home:
–https://www.owasp.org/index.php/OWASP_iGoat_Project

Source Home:
–http://code.google.com/p/owasp-igoat/

106

Copyright© 2012 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com

